Long-term Brain Tissue Monitoring after Semi-brain Irradiation in Rats Using Proton Magnetic Resonance Spectroscopy: A Preliminary Study In vivo

نویسندگان

  • Hong Chen
  • Yu-Shu Cheng
  • Zheng-Rong Zhou
چکیده

BACKGROUND In head and neck neoplasm survivors treated with brain irradiation, metabolic alterations would occur in the radiation-induced injury area. The mechanism of these metabolic alterations has not been fully understood, while the alternations could be sensitively detected by proton (1H) nuclear magnetic resonance spectroscopy (MRS). In this study, we investigated the metabolic characteristics of radiation-induced brain injury through a long-term follow-up after radiation treatment using MRS in vivo. METHODS A total of 12 adult Sprague-Dawley rats received a single dose of 30 Gy radiation treatment to semi-brain (field size: 1.0 cm × 2.0 cm; anterior limit: binocular posterior inner canthus connection; posterior limit: external acoustic meatus connection; internal limit: sagittal suture). Conventional magnetic resonance imaging and single-voxel 1H-MRS were performed at different time points (in month 0 before irradiation as well as in the 1st, 3rd, 5th, 7th, and 9th months after irradiation) to investigate the alternations in irradiation field. N-acetylaspartate/choline (NAA/Cho), NAA/creatinine (Cr), and Cho/Cr ratios were measured in the bilateral hippocampus and quantitatively analyzed with a repeated-measures mixed-effects model and multiple comparison test. RESULTS Significant changes in the ratios of NAA/Cho (F = 57.37, Pg < 0.001), NAA/Cr (F = 54.49, Pg < 0.001), and Cho/Cr (F = 9.78, Pg = 0.005) between the hippocampus region of the irradiated semi-brain and the contralateral semi-brain were observed. There were significant differences in NAA/Cho (F = 9.17, Pt < 0.001) and NAA/Cr (F = 13.04, Pt < 0.001) ratios over time. The tendency of NAA/Cr to change with time showed no significant difference between the irradiated and contralateral sides. Nevertheless, there were significant differences in the Cho/Cr ratio between these two sides. CONCLUSIONS MRS can sensitively detect metabolic alternations. Significant changes of metabolites ratio in the first few months after radiation treatment reflect the metabolic disturbance in the acute and early-delayed stages of radiation-induced brain injuries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Magnetic Resonance Spectroscopy in Neurocognitive Assessment After Head Injury: A Systematic Review

Background: Traumatic brain injury is believed to be a public health disorder with some complications. Post Traumatic Neurocognitive Disorders (PTND) received much attention among these complications because of the high prevalence of mild traumatic brain injuries. On the other hand, advanced neuroimaging is increasingly becoming an exciting modality in the field of traumatic brain injury. Magne...

متن کامل

Detection of Glioblastoma Multiforme Tumor in Magnetic Resonance Spectroscopy Based on Support Vector Machine

Introduction: The brain tumor is an abnormal growth of tissue in the brain, which is one of the most important challenges in neurology. Brain tumors have different types. Some brain tumors are benign and some brain tumors are cancerous and malignant. Glioblastoma Multiforme (GBM) is the most common and deadliest malignant brain tumor in adults. The average survival rate for peo...

متن کامل

Quantitative assessment of neurochemical changes in a rat model of long-term alcohol consumption as detected by in vivo and ex vivo proton nuclear magnetic resonance spectroscopy.

The aim of present study was to quantitatively investigate the neurochemical profile of the frontal cortex region in a rat model of long-term alcohol consumption, by using in vivo proton magnetic resonance spectroscopy ((1)H-MRS) at 4.7 T and ex vivo(1)H high-resolution magic angle spinning (HR-MAS) technique at 11.7 T. Twenty male rats were divided into two groups and fed a liquid diet for 10 ...

متن کامل

Magnetic resonance spectroscopy and gliomas

In vivo proton magnetic resonance spectroscopy (1HMRS) can substantially improve the non-invasive categorization of human brain tumors, especially for gliomas. It provides greater information concerning tumor activity and characterization of the tumor tissue than is possible with MRI techniques alone. Moreover, 1HMRS may ultimately prove to be a highly beneficial modality in the post-irradiatio...

متن کامل

نقش متابولیتها در تشخیص توده های مغزی با استفاده از طیف سنجی تشدید مغناطیس هسته ای و مقایسه غلظت آنها در بیماران تومورال با افراد سالم

Background and Aim: Brain tumors have remained as a significant cause of morbidity and mortality and are often refractory to treatment. The grading of brain tumor has an important implication in clinical management. Currently, magnetic resonance spectroscopy (MRS) is an important dimension in evaluating metabolites and grading brain tumors. The aim of this study is to evaluate metabolites in br...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 130  شماره 

صفحات  -

تاریخ انتشار 2017